

DIRA GANDHI DELHI TECHNICAL UNIVERSITY FOR WOMEN (Established by Govt. of Delhi vide Act 9 of 2012)

Mater of Computer Applications (MCA)

First Semester

S. No.	Code	Subject	L-T-P Credits		Category
1	MCA-101	Fundamentals of Information Technology	3-0-2	4	DCC
2	MCA-103	Problem Solving using C Programming	3-0-4 5 D C		DCC
3	MCA-105	Discrete Mathematics	3-1-0 4 DCC		DCC
4	MCA-107	Computer Organization	3-0-2	4	DCC
5	5HMC-101Professional Skills3-0-0		3	НМС	
TOTAL					

Second Semester

S. No.	Code	Subject	L-T-P	Credits	Category
1	MCA-102	Data Structures	3-0-4	5	DCC
2	MCA-104	Object Oriented Programming withC++	3-0-4	5	DCC
3	MCA-106	Software Engineering	3-0-2	4	DCC
4	MCA-108	Operating Systems	3-0-2	4	DCC
5	5HMC-102Human Values and Professional Ethics3-0-0		3	НМС	
TOTAL					

Third Semester

S. No.	0. Code Subject L-T-P		L-T-P	Credits	Category
1	MCA-201	Design and Analysis of Algorithms	3-0-2	4	DCC
2	MCA-203	Cloud Computing	3-0-2 4 DC		DCC
3	MCA-205	Database Management Systems	ems 3-0-2 4		DCC
4	MCA-207	A-207 Web Technologies 3-0-2		4	DCC
5	5 GEC-201 Generic Open Elective-1 0-0-4 2		2	GEC	
6	6 HMC-202 Principles of Management 3-0-0		3	НМС	
7	7 MCA-153 Industrial Training/Internship -				DCC
	-		22		

Fourth	Semester
--------	----------

S. No.	D. Code Subject L-T-P		Credits	Category	
1	MCA-202	Java Programming	3-0-2	4	DCC
2	MCA-204	Artificial Intelligence	3-0-2 4 DC		DCC
3	MCA-206	Data Communications and Computer Networks	3-0-2 4 D		DCC
4	DEC-2xx	Departmental Elective-1	3-1-0	4	DCC
5	HMC-202	Disaster Management	2-0-0 2 HMC		НМС
6	6HMC-204Organizational Behavior3-0-0		3	НМС	
TOTAL					

Fifth Semester

S. No.	Code Subject L-T-P		Credits	Category	
1	MCA-301	Software Testing	3-0-2	4	DCC
2	DEC-303	Machine Learning and Data Analytics	3-0-2	DCC	
3	DEC-3xx	Departmental Elective -2	3-0-2 4 DEC		DEC
4	DEC-3xx	Departmental Elective-3	3-0-2	4	DEC
5	GEC-301	Generic Open Elective-2	0-0-4 2 GEC		GEC
6	MCA-351	Minor Project	3-0-0		DCC
7	7MCA-353Industrial Training/Internship1-0-0		1	DCC	
	TOTAL 22				

Sixth Semester

S. No.	Code	Subject	L-T-P	Credits	Category
1	MCA-352	Major Project	-	20	DCC

Category	Course Code	Subject	Credits
Departmental	MCA 208	Computer Graphics and Multimedia Technologies	3-0-2
Elective Course-1	MCA 210	Soft Computing	3-0-2
	MCA 212	Cyber Security and Forensics	3-1-0
	MCA 214	Software Project Management	3-0-2
Departmental	MCA 305	Network Security	3-0-2
Elective Course-2	MCA 307	Advanced DBMS	3-0-2
	MCA 309	E-Commerce	3-0-2
	MCA 311	Software Quality Assurance	3-1-0
Departmental	MCA 313	Internet of Things (IoT)	3-0-2
Elective Course-3	MCA 315	Advanced Data Structures	3-0-2
	MCA 317	Theory of Computation	3-1-0
	MCA 319	Mobile Computing	3-1-0

List of Departmental Elective Courses

Fundamentals of IT				
Course Code: MCA 101 Contact Hours: L-3 T-1 P-0 Course Category: DCC	Credits: 4 Semester: 3			

Computing and programming are essential to leverage the technical skills of a student. The course Fundamentals of Information Technology has become essential in the present age of computer technology and information, as the applications of information technology can be found in all aspects of our lives. This course is designed to meet the requirements of students having very little knowledge of computers and help them to learn from the basic fundaments of computers through applications of information technology.

Course Objective :

The focus of the subject is on introducing skills relating to IT basics, computer applications, programming, Operating systems and computer network basics etc.

Pre-requisite: Preliminary knowledge of computer, their operations and applications. Course Outcome:

At the end of this course, student should be able to

- Understand basic concepts and terminology of information technology.
- Have a basic understanding of personal computers and their operations.
- Familiarise operating systems , programming languages, peripheral devices and networking.
- Understand the concepts related to computer software, hardware and storage fundamentals.

Pedagogy: Lectures will be delivered via discussions, whiteboard, slideshows and assignments.

Contents				
UNIT-I	10 Hours			
Information Concepts and Processing : Definition of Information Technology, Quality,				
need of information system, levels of information, data processing, definition of				
knowledge				
Evolution of Computer, Block diagram of Computer				
Programming languages and Translators: Low and high level languages, ass	sembly			
language, 4GL and 5GL Introduction to assemblers, compilers, interpreters, link	ers and			
loaders.				
Number System: Bit, byte, binary, decimal, hexadecimal, and octal systems, co	onversion			
from one system to the other,				
Binary Arithmetic: Addition, subtraction and multiplication. Representation of				
Information: Integer and floating point representation, Complement schemes, Cl	haracter			
codes (ASCII, EBCDIC, BCD, Excess-3, Grey).				
UNIT-II	11 Hours			
Introduction to Computer software: Introduction to system software, categorie	es of			
system and application, Distinction between systems software and Application s	oftware,			
Introduction to Software Development activities.				
Introduction to Computer Hardware: CPU, Memory, different types of memory	ries			
(Cache memory, virtual memory and Auxillary memory), Various I/O devices.				
Storage Fundamentals: Primary vs Secondary Storage, Data storage & retrieval				
methods. Primary Storage: RAM ROM, PROM, EPROM, EEPROM. Secondary Storage:				
Magnetic Tapes, Magnetic Disks. Cartridge tape, hard disks, Floppy disks Optic	al Disks,			
Compact Disks, Zip Drive, Flash Drives.				

UNIT-III 10 Hours					
Operating systems : Evolution, introduction to OS, functions and facilities, Different					
types of operating systems (Batch, multi-programming, time sharing, multiprocessing, PC					
operating system, real time operating system, single tasking and multitasking OS, single					
user and multi-user OS)					
Introduction to process management: process, threads, scheduling, characteristics of					
MS-DOS and Unix operating system, DOS and UNIX commands, Introduction to					
Database Management System and its types.					
UNIT-IV 10 Hours					
Communication and Computer Network: - Basic elements of a Communication System					
, Data transmission media, Digital and Analog, Network Types (LAN, WAN and MAN),					
inter networking devices and Communication Protocols, Intranet and Extranet, Hypertext					
Markup Language, WWW, HTTP, HTTPs, FTP, Telnet, Web Browsers, Search Engines,					
Email, Digital Signatures, Firewall.					
Text Books					
1 Anoop Mathew , Fundamentals of Information Technology, Alpha Science					
International Ltd, 2013					
2 P. K. Sinha and Priti Sinha , "Computer Fundamentals", BPB Publications, 2011.					
3 Forouzan, Data Communication and Networking, McGraw Hill Education, 2017					
Reference Books					
V. Rajaraman, "Fundamentals of Computers", PHI; 6th Revised edition edition					
,2014					
2 Morris Mano, " Computer System Architecture", Pearson, 3rd Ed, 2017.					

PROBLEM SOLVING USING C PROGRAMMING			
Course Code: MCA-103 Contact Hours: L-3 T-0 P-4 Course Category: DCC	Credits: 5 Semester: 1		

This course provides an introduction to computer concepts, logic, and computer programming. It includes designing, coding, debugging, testing, and documenting programs using a high-level programming language.

Course Objectives:

- To learn the fundamental programming concepts and methodologies, essential to build efficient C programs.
- To practice the fundamental programming methodologies in the C programming language via lab sessions.
- To code, document, test, and implement a well-structured, robust computer program using the C programming language.
- To write reusable modules (collections of functions) in C.

Pre-requisite: None

Course Outcome: Upon successful completion of this course, students will be able to:

- Gain a broad perspective of the uses of computer in engineering industry.
- Develop basic understanding of computers, the concept of algorithm and algorithmic thinking.
- Develop the ability to analyze a problem and develop an algorithm to solve it.
- Leverage C programming language to implement various algorithms, and develop the basic concepts and terminology of programming, in general.

Pedagogy:

The class will be taught using theory and tutorial based methods which include board teaching and presentations/slides, discussions etc. Along with classroom teaching, students will also be given assignments regarding the topics covered.

Contenta		
UNIT-I	11 Hours	
Introduction to Programming and its Environment: Need for programmi	ng, Levels	
(High and Low) of programming, Development process (Preprocessor, Comp	iler, Linker	
and Loader), Linux -commonly used commands like mkdir, cd, ls, etc., com	piler –gcc,	
editor –vim	_	
C Language Introduction: Program Structure through simple C programs, Constants and Variables, Data Types –Basic and Advanced, Operators and Expressions, Managing		
input and output operations using printf and scanf, Command line input, (Conditional	
constructs, Looping constructs. Problem solving exercises based on -cond	itional and	
looping constructs.		
UNIT-II	11 Hours	
Pointers, Arrays and Strings: Concept of memory, Definition, Usage -addr	ess of and	
value at operation, Pointer arithmetic. Pointer to pointer, Arrays (Single	and Multi-	
dimensional) and Strings-with emphasis on role of pointers in them, Pointer to Array,		
Array of pointers. Problem solving exercises based on –pointers, arrays and strings.		
Procedural programming: Functions (Function Prototyping, passing p	parameters	
through call by value and call by reference, returning values, recursion)	, Program	
organization using functions, Emphasis on reusability through C examples	. Problem	
solving exercises based on –functions.		
solving exercises based on –functions.		

File handling: Concept of streams, File pointer, Reading and Writing to file, Closing a file, Random access in a file, Error handling during file I/O operations. Problem solving exercises based on –files.

Problem Solving: Algorithm, Flowchart and Pseudo code. Program design.

	UNIT-IV	10 Hours
Advar	nced concepts: Pointers to functions and Callback functions. Storag	e classes
(auto,	extern, static, register), The C Preprocessor (#define, #undef, #in	clude, #if
conditional inclusion and other preprocessor directives), Defining New Data Types-		
Structures, Unions, Enumerated Types		
Dynamic Memory Management: malloc, calloc, realloc, size of, free.		
Introduction to Data Structure: Linked Lists and dynamic data structures. Problem		
solving	g exercises based on –advanced concepts and data structures	
Text E	300ks	
1	Yashwant Kanetkar, "Let us C", BPB Publications, 16 th edition, 2018.	
2	B. Kernighan and D. Ritchie, "The ANSI C Programming Language", 2 nd	edition.
Refere	ence Books	
1	Paul Deitel and Harvey Dietel, "How to Program", PHI, 8 th Ed., 2015.	
2	Behrouz A. Forouzan and Richard F. Gilberg, "Computer Science A	Structured
	Programming Approach Using C", PHI, 3rd Ed., 2007	
3	Jeri R. Hanley and Elliot B. Koffman, "Problem Solving and Programm	ning in C",
	Pearson, 8 th Ed. 2015.	

DISCRETE MATHEMATICS		
Course Code: MCA-105	Credits: 4	
Contact Hours: L-3 T-1 P-0	Semester: 1	
Course Category: DCC		
Introduction		

Discrete mathematics forms the mathematical foundation of computer and information science. This course familiarizes with a broad range of mathematical objects like sets, functions, relations, graphs, that are omnipresent in computer science.

Course Objectives:

- To explain formal statements and their proofs; coming up with rigorous proofs themselves; and coming up with interesting results.
- To show at least one interesting and non-trivial result and give a full proof of introduced concepts.

Pre-requisites:

Basic mathematical operations

Course Outcomes:

On successful completion of this course, the students should be able to:

- Explain the concepts of set theory, relations, functions and Boolean algebra in the context of various fields of computer science e.g. Database, Automata, Compiler etc.
- Convert formal statements to logical arguments and correlate these arguments to Boolean logic, truth tables, rules of propositional and predicate calculus.
- Apply the fundamental principle of counting, combinatorics and recurrence relations to find the complex pattern and sequences in given datasets.
- For a given a mathematical problem, classify its algebraic structure.
- Develop the given problem as graph networks and apply the graph theory concepts for designing solutions of various computing problems e.g. shortest path, graph coloring, job sequencing, ranking the participants in a tournament problems etc.

Pedagogy:

The materials are delivered mostly through lectures videos to make complex subject easy to comprehend. More details on certain lessons are delivered through examples to provide more explanation.

Contonto

Contents		
UNIT-I	10 Hours	
Set Theory: Notations, Types of sets, Multisets, Ordered pairs, Cartesian produ	ct, Combination	
of sets, Set Algebra, Proofs of some general identities on sets.		
Relations: Representation, Relation types and properties, Operations on relatio	ns, Equivalence	
relations, Equivalence Partitions, Equality of relations, Order of relations, F	Partial ordering,	
Recursive definition of relation.		
Closure: Reflexive, Symmetric and Transitive closures, Warshall's algorith	im to compute	
transitive closure of a relation, Composite Relations, Functions, Classification	on of functions,	
Operation on functions.		
Boolean Algebra: Introduction, Boolean functions, Representations and s	simplification of	
Boolean functions, Theorems of Boolean algebra, Algebraic manipulation	on of Boolean	
expressions, Logic implications, Karnaugh maps, Application of Boolean functions to synthesis		
of circuits.		
Partially Ordered Sets and Lattices: Posets, lattices, Combination of partial order sets,		
Properties of lattices, Lattices as Algebraic systems, Sub lattices, Homomorphism, Hasse's		
diagram, Bounded, Complemented, Modular and Complete lattice		
UNIT-II	11 Hours	
Combinatorics: Principle of mathematical induction, Selected problems of	n mathematical	
induction, Fundamental principles of counting, Pigeonhole principle, Principle	of inclusion and	

exclus Discre Lineat case, Logic: proofs	sion. ete Numeric Functions and Recurrence Relations: Introduction, Asymptotic behavior, r recurrence relations with constant coefficients (homogeneous and non homogeneous Solution of linear recurrence relations using generating functions. : Propositional logic, Tautology, Predicate Algebra, Quantifiers, Operators, Methods of s: direct, formal, informal, contradiction, induction, contraposition, exhaustive.
	UNIT-III 11 Hours
Discre exhau Bayes Proba of a (Univa Effect of rar Algeb Lagra Conge Symm polyne arithm	ete Probability: Sample space, Discrete Sample space, Types of Events: mutually istive, mutually exclusive, Axioms of probability, Conditional probability, Total probability, s' theorem, Univariate and bivaiate probability distributions, Discrete random variables, ibility mass function and cumulative distribution function, Mode and median and variance univariate and bivariate discrete probability distribution, Mathematical Expectation ariate and bivariate Random Variable), Expectation of a function of a random variable, of change of origin and scale on mean and variance. Expectation and variance of sums ndom variables. Conditional expectation and prediction. The Central Limit Theorem, raic Structures: Definition, Groups, Subgroups and order, Cyclic Groups, Cosets, nge's theorem, Semi groups and monoids, Cyclic semigraphs and submonoids, ruence relations on semigroups, Normal Subgroups, Dihedral groups, Permutation and netric groups, Group Homomorphisms, Properties of Rings and Fields, Integers Modulo n, omial arithmetic, quadratic residues, reciprocity, discrete logarithms, elliptic curve netic.
	UNIT-IV 10 Hours
Graph isomo Euler plana graph spanr Applic Web,	n theory: Path, cycles, handshaking theorem, bipartite graphs, sub-graphs, graph orphism, operations on graphs, Eulerian graphs and Hamiltonian graphs, planar graphs, formula, travelling salesman problem, shortest path algorithms. Graphs, Euler tours, r graphs, Hamiltonian graphs, Euler's formula, applications of Kuratowski's theorem, coloring, chromatic polynomials, trees, weighted trees, shortest path algorithms, hing trees, the max-flow min-cut theorem. cations of Discrete Mathematics in Computer Science: Information Theory, Semantic Formal Software Verification, Theorem Proving, Game Theory, Cryptography.
Text E	Books
1	Rosen, Kenneth H., and Kamala Krithivasan. Discrete mathematics and its applications: with combinatorics and graph theory. Tata McGraw-Hill Education, 2012.
2	Seymour Lipschutz, Marc Laras Lipson, Varsha H. Patil, Discrete Mathematics (Schaum's Outlines) McGraw Hill Education; Revised Third edition (1 July 2017)
Refer	ence Books
1	Dec. Narsingh, Graph theory with applications to engineering and computer science

The course aims to provide students with an understanding of the design of fundamental blocks of a computer system and interfacing techniques of these blocks to achieve different configurations of a computer system. It covers the basic topics in the design of computational units, instruction organization, memory systems, control and data flow, and interconnections.

Course Objective:

- To have a thorough understanding of the basic structure and operation of a digital computer.
- To study the different ways of communicating with I/O devices and standard I/O interfaces.

Pre-requisite: Digital Systems and Computer Design

Course Outcome: Upon successful completion of this course, students will be able to:

- Understand logic gates, flip flops and counters
- have clear understanding of Computer Architecture
- come to know about pipeline processing
- have an insight into RISC and CISC architectures

Pedagogy:

The class will be taught using theory and tutorial based methods which includes board teaching and presentations/slides, case studies, discussions etc. Along with classroom teaching, students will also be given assignments regarding the topics covered. The course instructor will demonstrate and explain about applications of Computer organisation techniques with research orientation.

Contents

UNIT-I	10 Hours	
Introduction and overview: Multiplexes, Demultiplexers, Decoders, Adders		
Flip-flops: S-R, JK, D, T, Master Slave and Edge triggered, Registers, shift reg	gisters, Bi-	
direction shift registers.		
Register Transfer and Microoperation: Register transfer language, register	er transfer,	
bus and memory transfer, arithmetic microoperations, logic microoperati	ions, shift	
microoperations.		
UNIT-II	11 Hours	
Basic Computer Organization and Design: Instruction codes, computer	registers,	
computer instructions, timing & control, instruction cycle, memory reference in	structions,	
input-output and interrupts, design of basic computer, design of accumulator log	gic.	
Micro programmed Control Unit: Control memory, address sequencing.		
Central Processing Unit: Introduction, general register organization, stack organization,		
instruction formats, addressing modes.		
UNIT-III	11 Hours	
Pipeline and Vector processing: Parallel Processing, pipelining, arithmetic pipeline,		
RISC Pipeline, Vector Processing, Array Processors.		
Input-Output Organization: Peripheral devices, input-output interface, asy	nchronous	
data transfer, modes of data transfer, priority interrupt, direct memory acce	ess, input-	
output processor.	-	

	UNIT-IV	
Memo	bry organization: Memory hierarchy, main memory, auxiliary memory, a	associative
memory, cache memory, virtual memory, memory management hardware.		
Multiprocessors: Characteristics of multiprocessor, Interconnection Structure,		
Interprocessor Communication & Synchronization.		
Text Books		
1	Mano M, "Computer System and Architecture", Pearson, 3rd Ed., 2009	
2	2 Stallings W, "Computer Organization & Architecture", PHI, 9th Ed., 2013.	
Reference Books		
1	Hayes, J. P. "Computer Architecture and Organization", McGraw Hill,	3 rd edition,
	2017.	
2	Andrew S. Tanenbaum, "Structured Computer Organization", PHI, 6th E	d., 2016.
3	P V S Rao "Computer System Architecture" PHI 5th Ed 2009	

PROFESSIONAL SKILLS		
Course Code: HMC-101	Credits: 3	
Contact Hours: L-3 T-0 P-0	Semester: 1	
Course Category: HMC		

Introduction - This course aims to enhance the students' professional communication skills by providing adequate exposure in verbal and nonverbal skills and related sub skills. The course is designed to provide awareness of appropriate communication strategies with social, organizational and cultural awareness. The course empowers students in day to day professional soft skills like listening skills, presentation skills, and group discussion etc.

Course Objectives:

- > To know the process of professional communication and its various components.
- To improve language skills i.e. Listening Skills, Speaking Skills, Reading Skills and Writing Skills (LSRW).
- > To create literary sensibility and enhance comprehension skills.
- > To develop confidence for communicating in English language.

Pre-requisites: None

Course Outcome – After completion of the course, the students should be able to:

- Understand the importance of flawless communication in professional environment.
- > Enrich knowledge and improve skills required for corporate world.
- > Evaluate theoretical frameworks and concepts for the study of communication..
- > Develop ethical professional habits.

Pedagogy:

- > To provide knowledge of various communication processes through innovative and interactive classroom teaching sessions.
- > To evaluate students' progress through practical sessions including Group discussion, Presentations, role plays and JAMs.

Contents

UNIT-I	10 Hours	
Self analysis through SWOT, Johari window, Personality Development, Intra personal communication vs. Inter personal Communication and Relationships, Leadership Skills, Team Building, Public speaking, Individual Communication, Self advertising, Over stating and under stating, Time Management.		
UNIT-II	12 Hours	
Communication Boosters: Body language, Voice, Posture and gesture, Eye contact, Dress codes, Verbal crutches, Pronunciation, Contextualization: creating and understanding contexts, Aura words. Interview: Types of Interview, Preparing for the Interviews, Attending the Interview, Interview Process, Employers Expectations, General Etiquette.		
UNIT-III	10 Hours	

Page | 12

Group Discussions: Guidelines, Expressions, Evaluation. Video conferencing, Telephone skills, Teleconferencing, Participation in meetings: chairing sessions. Presentation Skills, Types of presentation, Capturing Data, Guidelines to make an effective presentation, Body Language, Voice Modulation, Integrating voice & picture, Audience Awareness, Presentation Plan, Visual Aids, Forms of Layout, Styles of Presentation, Management presentations.

	UNIT-IV	10 Hours
Letter w	riting: Types of Letters, Business letters, E-mail, Fax,	Pro-forma culture,
Drafting t	he Applications, Format, Style, Effectiveness, study of samp	le letters, Elements
of structu	ire, Preparing a CV / Resume, Statement of Purpose, I	Paragraph Writing,
Greeting,	Memos, Reports, Minutes, Business correspondence.	
Text Boo	ks	
1. Rajendra Pal, J S Korlahhi. Essentials of Business Communication, Sultan		
Chand & Sons, 2017.		
2.	Andre J. Rutherford . Basic Communication Skills for Technology, Pearson	
	Education Asia, 2014.	
3.	KR Lakshiminarayana: English for Technical Communication, Scitech	
Publications, 2015.		
Referenc	e Books	
1.	RK Madhukar. Business Communication, Vikas Publishing	House Pvt. Ltd.
	2018.	
2.	English in Mind, Herbert Puchta and Jeff Stranks, 2 nd Editio	on, Cambridge
	University Press 2010.	
3.	Suresh K, P. Srihari, J Savithri, Communication Skills and S	oft Skills: An
	Integrated Approach,1 st Edition, Pearson Education, 2010.	

DATA AND FILE STRUCTURES		
Course Code: MCA- 102 Contact Hours: L-3 T-0 Course Category: DCC	P-4	Credits: 5 Semester: 2

This course covers the design, analysis, and implementation of data structures and algorithms to solve engineering problems using an object oriented programming language. Topics include elementary data structures, (including arrays, stacks, queues, and lists), advanced data structures (including trees and graphs), the algorithms used to manipulate these structures, and their application to solving practical engineering problems. Course Objectives:

- To learn efficient storage mechanisms of data for an easy access.
- To design and implement various basic and advanced data structures.
- To introduce various techniques for representation of the data in the real world.
- To develop applications using data structures.

Pre-requisite: Standard programming language C/C++, mathematical knowledge, knowledge of basic probability.

Course Outcome: Upon successful completion of this course, students will be able to:

- choose appropriate data structure as applied to specified problem definition.
- handle operations like searching, insertion, deletion, traversing mechanism etc. on various data structures.
- apply concepts learned in various domains like DBMS, compiler construction etc.
- use linear and non-linear data structures like stacks, queues, linked list, trees and graphs etc.

Pedagogy

The class will be taught using theory and tutorial based methods which include board teaching, presentations/slides, discussions and case based studies. Along with classroom teaching, students will also be given assignments regarding the topics covered.

UNIT-I	11 Hours
Introduction: Abstract Data Type, Elementary Data Organization, Measuring	efficiency
of an Algorithm, Time and Space Complexity, Asymptotic notations. Arrays: Single and	
Multidimensional Arrays,	-
Representation of Arrays: Row Major Order, and Column Major Order, App	olication of
arrays, Sparse Matrices.	
Linked lists: Array and Dynamic Implementation of Single Linked Lists, Dou	bly Linked
List, Circularly Linked List, Operations on a Linked List. Insertion, Deletion,	Traversal,
Polynomial Representation and Addition.	
Stacks: Stack operations: Push & Pop, Array and Linked list implementation	n of Stack,
Applications: Prefix and Postfix Expressions, Evaluation of postfix expression, F	Recursion.
UNIT-II	11 Hours
UNIT-II Queues: Operations: Create, Add, Delete, full and empty queues, Array a	11 Hours and linked
UNIT-II Queues: Operations: Create, Add, Delete, full and empty queues, Array a implementation of queues, Dequeue, Circular queues and Priority Queue. Hash	11 Hours and linked hing: Hash
UNIT-II Queues: Operations: Create, Add, Delete, full and empty queues, Array a implementation of queues, Dequeue, Circular queues and Priority Queue. Hash Function, Hash Table, Collision Resolution Strategies.	11 Hours and linked hing: Hash
UNIT-II Queues: Operations: Create, Add, Delete, full and empty queues, Array a implementation of queues, Dequeue, Circular queues and Priority Queue. Hash Function, Hash Table, Collision Resolution Strategies. Trees: Basic terminology, Binary Trees, Array and linked list implementation	11 Hours and linked hing: Hash , Types of
UNIT-II Queues: Operations: Create, Add, Delete, full and empty queues, Array a implementation of queues, Dequeue, Circular queues and Priority Queue. Hask Function, Hash Table, Collision Resolution Strategies. Trees: Basic terminology, Binary Trees, Array and linked list implementation Binary Tree, Extended Binary Trees, Algebraic Expressions, Tree Traversal a	11 Hours and linked hing: Hash , Types of algorithms:
UNIT-II Queues: Operations: Create, Add, Delete, full and empty queues, Array a implementation of queues, Dequeue, Circular queues and Priority Queue. Hask Function, Hash Table, Collision Resolution Strategies. Trees: Basic terminology, Binary Trees, Array and linked list implementation Binary Tree, Extended Binary Trees, Algebraic Expressions, Tree Traversal a Inorder, Preorder and Postorder, Threaded Binary trees, Search, Addition and	11 Hours and linked hing: Hash , Types of algorithms: deletion of
UNIT-II Queues: Operations: Create, Add, Delete, full and empty queues, Array a implementation of queues, Dequeue, Circular queues and Priority Queue. Hask Function, Hash Table, Collision Resolution Strategies. Trees: Basic terminology, Binary Trees, Array and linked list implementation Binary Tree, Extended Binary Trees, Algebraic Expressions, Tree Traversal a Inorder, Preorder and Postorder, Threaded Binary trees, Search, Addition and an element in a binary tree, AVL Trees, Heaps, B Trees, Trees and their ap	11 Hours and linked hing: Hash , Types of algorithms: deletion of oplications,
UNIT-II Queues: Operations: Create, Add, Delete, full and empty queues, Array a implementation of queues, Dequeue, Circular queues and Priority Queue. Hask Function, Hash Table, Collision Resolution Strategies. Trees: Basic terminology, Binary Trees, Array and linked list implementation Binary Tree, Extended Binary Trees, Algebraic Expressions, Tree Traversal a Inorder, Preorder and Postorder, Threaded Binary trees, Search, Addition and an element in a binary tree, AVL Trees, Heaps, B Trees, Trees and their ap Evaluating an expression tree.	11 Hours and linked hing: Hash , Types of algorithms: deletion of oplications,
UNIT-II Queues: Operations: Create, Add, Delete, full and empty queues, Array a implementation of queues, Dequeue, Circular queues and Priority Queue. Hask Function, Hash Table, Collision Resolution Strategies. Trees: Basic terminology, Binary Trees, Array and linked list implementation Binary Tree, Extended Binary Trees, Algebraic Expressions, Tree Traversal a Inorder, Preorder and Postorder, Threaded Binary trees, Search, Addition and an element in a binary tree, AVL Trees, Heaps, B Trees, Trees and their ap Evaluating an expression tree.	11 Hours and linked hing: Hash , Types of algorithms: deletion of oplications,

Searching: Sequential search, Binary Search. Sorting: Insertion Sort, Selection, Bubble Sort, Quick Sort, Merge Sort, Heap Sort, Radix Sort, Bucket Sort, Shell Sort, Graphs: Representation (Matrix and Linked), Traversals, Shortest path, Topological sort. Dijkstra's Algorithm, Floyd Warshall's Algorithm, Minimum Spanning Tree Algorithms (Kruskal's Algorithm, Prim's Algorithm).

	40.11
UNIT-IV	10 Hours
Files: Creation and Processing of files, File handling using command line argun	nents, File
opening, closing, modes, formatted inputs, output to file, reading/writing	of files,
accessing records randomly, updating files. Operations on files, Library func	tions, File
Indexing (primary, secondary, clustered, unclustered, dense, sparse), File	streams,
Hierarchy of file stream classes, Error handling during file operations.	

Text E	Books	
1	Aaron Tanenbaum, "Data Structures Using C", 2 nd edition, 2016	
2	Ellis Horowitz and Sartaj Sahni, "Fundamentals of data structures" 2 nd edition,	
	2017	
Reference Books		
1	Seymour Lipschutz, "Data Structures", 2 nd Edition, 2015	
2	Donald Knuth, "The Art of Computer Programming", 2015.	

Object Oriented Programming with C++		
Course Code: MCA-104	Credits: 5	
Contact Hours: L-3 T-0 P-4	Semester: 2	
Course Category: DCC		

This course provides in-depth coverage of object-oriented programming principles and techniques. Topics include classes, objects, overloading, data abstraction, information hiding, encapsulation, inheritance, polymorphism, file processing, templates, exceptions, container classes etc.The course material embraces the C++11 language standard with numerous examples demonstrating the benefits of C++11. In the end some basics of Java will be covered Course Objective:

• To learn object oriented programming (OOP) principles and get a flavour of modular programming

Pre-requisite:Basics of C Programming Course Outcome:

- To learn basic programming in C++/ Java
- To learn OOP programming principles
- To develop OOP solutions to problems demonstrating usage of control structures, modularity, I/O and other standard language constructs
- To learn to apply modular programming semantic in real world problems

Pedagogy

• Emphasis on lab sessions where students will be given programming assignments to code in C++/Python/Java based on topics learnt in previous lectures.

Contents

UNIT-I	10
	Hours
Need for Object Oriented Programming, Comparison of Programming pa	aradigms,
Characteristics of Object-Oriented Programming Languages, Introd	uction to
Object Oriented concepts (classes, objects, encapsulation, inheritar	nce, data
hiding, abstraction, polymorphism), Fundamentals Data Types 8	Literals
Variables, Arrays, Operators, Control of Flow in OOP, Compilation and I	Execution
of Process , Reference vs. Pointer variable, Classes and Object	ts: class
declaration, Role of private, public and protected access specifiers, Memory	
organization of class, inline function, friend function, static members, constructor	
and destructors, instantiation of objects, default parameter value, object types	
UNIT-II	11
	Hours
Garbage collection, dynamic memory allocation, new and delete	operator
Polymorphism: Function overloading, Constructor overloading, Compile time	
polymorphism, Overloading Rules, Operator Overloading (Unary and Binary) as	
member function/friend function. Inheritance, Types of Inheritance,	Use of

protec resolu Const	cted access specifier, Virtual base class, Ambiguity resolution usi ition operator and Virtual base class, Overriding inheritance rructors and Destructor in derived classes, Runtime polymorphism,	ng scope methods,
	UNIT-III	11
		Hours
Pointer to objects, Virtual Functions (concept of virtual table), pure virtual functions, Abstract Class, Managing Input / Output, Concept of streams, console I/O – formatted and unformatted, Manipulators, File I/O – Predefined classes, file opening & closing, file manipulation, read & write operations, sequential and random file access, Exception Handling: Basic mechanism, Throwing, Catching and Re-throwing. Namespace: Basic concept, role of scope resolution operator		
	UNIT-IV	10
		Hours
Introduction to Java- Overview and characteristics of Java, Data types, Organization of the Java Virtual Machine, Compilation and Execution Process in java, Java Classes, Packages and interfaces, Case Studies using C++ to build highly extensible software: System Sort, Apache Traffic Server, Apache Open Office Document Suite		
Text E	Books	
1	Josée Lajoie and Stanley B. Lippman, "C++ Primer", 5 [™] Edition, 20)13
2	Herbert Schildt , "Java: The Complete Reference", 7 th Edition, TMI	۲.
3	Martin C. Brown, "Python: The Complete Reference", 4 th Edition, T 2018	ΜH,
Refer	ence Books	
1	Herbert Schildt, "C++: The Complete Reference", 4 th Edition, TMH	, 2017
2	Mark Lutz, "Learning Python"3 rd Edition, O"reilly Media, 2007	
3	Bjarne Stroustrup , "The C++ Programming Language", Pearson, 3 2000	Brd Ed,

SOFTWARE ENGINEERING		
Course Code: MCA-106	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester: 2	
Course Category: DCC		

This course covers the software development process, from requirements elicitation and analysis, through specification and design, to implementation, integration, testing, and maintenance (evolution). A variety of concepts, principles, techniques, and tools are presented, encompassing topics such as software processes, project management, people management, software requirements, system models, architectural and detailed design, user interface design, programming practices, verification and validation, and software evolution. Although the emphasis will be on modern approaches some more traditional software engineering techniques will also be discussed.

Course Objective (in bullets)

- To understand the coverage of the phases of the software process through study of related concepts, principles and techniques
- To carry out practical software development work using a systematic engineering approach.

Pre-requisite:

Fundamentals of Information Technology

Course Outcome

- Study of software engineering concepts, principles, and techniques
- Extensive coverage of the phases and activities of the software process
- Practical software development work within the framework of integrated development environments

Pedagogy

The class will be taught using theory and practical based methods.

Contents

UNIT-I	10 Hours	
Introduction: Software Crisis, Software Processes & Characteristics, Software	e life cycle	
models, Waterfall, Prototype, Evolutionary and Spiral Models.	-	
Software Requirements analysis & specifications: Requirement engineering, re	equirement	
elicitation techniques like FAST, QFD & Use case approach, requirements ana	lysis using	
DFD, Data dictionaries & ER Diagrams, Requirements documentation, Natur	e of SRS,	
Characteristics & organization of SRS, Requirement Management, IEEE Std. for	or SRS.	
UNIT-II	11 Hours	
Software Project Planning: Size Estimation like lines of Code & Function Co	ount, Cost	
Estimation Models, COCOMO, Putnam resource allocation model, Validating	g Software	
Estimates, Risk Management.		
Software Design: Cohesion & Coupling, Classification of Cohesiveness &	Coupling,	
Function Oriented Design, Object Oriented Design.	-	
UNIT-III	11 Hours	
Software Metrics: Software measurements: What & Why, Token Count,	Halstead	
Software Science Measures, Data Structure Metrics, Information Flow Metrics.		
Software Reliability: Importance, Hardware Reliability & Software Reliability, Failure and		
Faults, Reliability Models- Basic Model, Logarithmic Poisson Model, Software Quality		
Models, CMM & ISO 9001.		
UNIT-IV	10 Hours	
Software Testing: Testing process, Design of test cases, Introduction to functional testing		
& Structural testing, Unit Testing, Integration and System Testing, Debugging	g, Alpha &	
Beta Testing.		
Software Maintenance: Management of Maintenance, Maintenance	Process,	
Maintenance Models, Regression Testing, Reverse Engineering, Soft	ware Re-	

engineering, Configuration Management, Documentation.			
Text B	Text Books		
1	K.K.Aggarwal, Yogesh Singh: Software Engineering, New Age International Ltd,		
	3 ^{ra} Ed. 2008.		
2	Pankaj Jalote, An Integrated Approach to Software Engineering, Narosa		
	Publishing, 2010.		
Reference Books			
1	R.S. Pressman, Software Engineering – A Practitioner's Approach, 8th Edition,		
	McGraw Hill, 2019.		
2	Ian Sommerville, Software Engineering, 10th Edition, Pearson, 2017.		

OPERATING SYSTEMS		
Course Code: MCA-108	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester: 2	
Course Category: DCC		
Introduction:		

This course aims at introducing classical internal algorithms and structures of modern operating systems including CPU scheduling, memory management, and device management. Topics including file systems, virtual memory, disk scheduling, concurrent processes, deadlocks, security, and integrity will be covered.

Course Objective (in bullets):

- To learn the fundamentals of Operating Systems.
- To learn the mechanisms of OS to handle processes and threads and their communication.
- To learn the mechanisms involved in memory management in contemporary OS.
- To gain knowledge on OS architecture, mutual exclusion algorithms, deadlock detection algorithms etc.
- To know the components and management aspects of concurrency management.

Pre-requisite: Analysis of algorithms, algorithm design techniques, programming knowledge in C, C++ or JAVA.

Course Outcome: Upon successful completion of this course, students will be able to:

- Analyze the structure of OS and basic architectural components involved in OS design.
- Analyze and design the applications to run in parallel either using process or thread models of different OS.
- Analyze the various device and resource management techniques for timesharing systems.
- Understand the mutual exclusion and deadlock detection concepts.

Pedagogy

The class will be taught using theory and tutorial based methods which includes board teaching and presentations/slides, discussions, case studies etc. Along with classroom teaching, students will also be given assignments regarding the topics covered. The course instructor will demonstrate and explain about applications of Operating Systems techniques with real-time examples.

Contents	
UNIT-I	10 Hours
Introduction: Definition, Role, Types of Operating System, Batch Syste	ms, multi
programming, time-sharing, parallel, distributed and real-time systems, Operati	ng system
structure, Operating system components and services, System calls, System	programs,
Virtual machines.	
Processes: Process Concept, Process Scheduling, Operation on F	rocesses,
Cooperating Processes, Threads.	
CPU Scheduling: Basic Concepts, Scheduling Criteria, Scheduling Algorithms	s, Multiple
Processor Scheduling, Real-Time Scheduling.	
	11 1 0 100
	11 Hours
Interprocess Communication and Synchronization: Background, The Critic	al-Section
Problem, Synchronization Hardware, Semaphores, Classical Prob	lems of
Synchronization, Critical Regions, Monitors, Message Passing.	
Deadlocks: System Model, Deadlock Characterization, Methods for Handling L	Deadlocks,
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recov	ery from
Deadlock.	
Memory Management: Background, Logical vs. Physical Address space,	swapping,
Contiguous allocation, Paging, Segmentation, Segmentation with Paging.	

	UNIT-III	11 Hours
Virtua	al Memory: Demand Paging and its performance, Page-replacement A	lgorithms,
Alloca	tion of Frames, Thrashing, page size and other Considerations,	Demand
Segm	entation.	
Devic	e Management: Techniques for Device Management, Dedicated Device	s, Shared
Device	es, Virtual Devices, Independent Device Operation, Buffering, Device	Allocation
Consi	deration	
Secor	ndary-Storage Structure: Disk Structure, Disk Scheduling, Disk Mar	nagement,
Swap	Space Management, Disk Reliability.	-
	UNIT-IV	10 Hours
File-S	system Interface: File Concept, Access Methods, Directory Structure.	
File-S	system Implementation: Introduction, File-System Structure, Basic File	e System,
Alloca	tion Methods, Free-Space Management, Directory Implementation.	-
Security: The Security problem, Goals of protection, Access matrix, Authentication,		
Program threats, System threats, Intrusion detection.		
Text E	Books	
1	Silberschatz and Galvin, "Operating System Concepts", John Wiley, 9th	Ed., 2016
2	Tannenbaum, "Operating Systems", PHI, 5th Ed., 2000.	
3	Deitel, Deitel and Choffnes, "Operating Systems", Pearson, 3 rd Edition, 2	003
Reference Books		
1	Madnick E. and Donovan J., "Operating Systems", Tata McGraw Hill, 20	17.
2	Flynn McHoes, "Operating System", Cengage Learning, 6th edition, 2013	
3	Sibsankar Halder and Alex A. Arvind, "Operating System", Pearson, 200	9
4	William Stallings, "Operating Systems Internals & Design Principles",	, Pearson
	Education, 9th Ed., 2018	

HUMAN VALUES AND PROFESSIONAL ETHICS		
Course Code: HMC-102	Credits: 3	
Contact Hours: L-3 T-0 P-0	Semester: 2	
Course Category: HMC		

Introduction: Values and Ethicsare very relevant in today's environment of conflicts and stress in every profession, with obligations to be met by one person in many directions. A formal study will certainly improve one's ability and judgment and refine one's behaviour, decisions, and actions in performing the duty to the family, organization, and to the society.

Course Objective:

- To facilitate the development of a Holistic perspective among students towards life, profession and happiness, based on a correct understanding of the Human reality and the rest of Existence. Such a holistic perspective forms the basis of Value based living in a natural way.
- To inculcate Ethics and Human Values into the young minds and develop moral responsibility and mould them as best professional which will create ethical vision and achieve harmony in life.

Prerequisite: None

Course Outcomes:

Having successfully completed this course, the student will be able to

- Develop the capability of shaping themselves into outstanding personalities, through a value based life.
- > Students turn themselves into champions of their lives.
- Students take things positively, convert everything into happiness and contribute for the happiness of others.
- Students become potential sources for contributing to the development of the society around them and institutions / organizations they work in.
- Students shape themselves into valuable professionals, follow professional ethics and are able to solve their ethical dilemmas.

Pedagogy: The learning and teaching methods include the use of weekly three-hour lectures to illustrate the subject and provide examples of the practical application of such topics. Lecture materials will be supported by directed reading and assignments.

Contents	
UNIT-I	10 Hours
Human Values	
Morals, Values and Ethics, Integrity, Work Ethic, Respect for Others	s, Living Peacefully,
Caring, Sharing, Honesty, Valuing Time, Co-operation, Commitment, Empathy, Self-	
Confidence, Character, Spirituality. Indian values (on the concep	tual framework of
Vedas): Purusharth, Niskama karma, Religion and Human Values,	Towards a World
Religion, Ethical Living and Harmony in Life.	
UNIT-II	10 Hours
Ethics and Engineering Profession	
Profession and Professionalism, Ethical Theories: Kohlberg's Theory, Gilligan's Theory,	
Moral Dilemmas, Types of Enquiry, Uses of Ethical Theories, Engi	neering Profession,

Engineering Professionals- Training, Skill Set, Life Skills, Engineering Ethics: Making Senses and Issues, Ethical Obligations of Engineers, Ethical Codes for Engineers		
Jenses an	UNIT-III 12 Hours	
Engineer	ring as a Social Experimentation. Safety Responsibility and Rights:	
Engineer	ing as experimentation, Engineers as responsible Experimenters, Concept of	
Safety and Risk. Engineer's Responsibility for Safety. Risk – Benefit Analysis. Case		
Studies: The challenger case study, The Three Mile Island, Fukushima Nuclear Disaster,		
Bhopal G	as Tragedy. Disaster Management, Professional Rights, Employee Rights,	
Intellectu	al Property Rights (IPRs), Human Rights and Human Responsibilities. Major	
Ethical Is	sues.	
	UNIT-IV 10 Hours	
Ethics an	id Global Issues	
Ethics in	Global Scenario, Multinational corporations, Environmental ethics, computer	
ethics, B	Business Ethics. Corporate Social responsibility, Weapons Development,	
Research	Ethics.	
Text Boo	ks	
4.	Govindarajan M., Natarajan S., Senthil Kumar V. S., "Engineering Ethics",	
	Prentice Hall India Learning Private Limited, New Delhi, 2004.	
5.	Subramaniam R., "Professional Ethics", Oxford University Press, New Delhi,	
	2013.	
6.	Mike Martin and Roland Schinzinger, "Ethics in engineering", 4 th	
	Edition,McGraw-Hill Education 2004.	
7.	RR Gaur, R Sangal, GP Bagaria, "A Foundation Course in Human values and	
0	Professional Ethics", Excel Books Pvt. Ltd, New Delhi 2009.	
8.	A.N. Iripathi, Human values, New Age International Publishers, New Deini,	
Deference		
	B.P. Baneriee "Foundation of Ethics and Management" Excel Rooks, 2005	
т . 5	Floddormann Charles D. "Engineering Ethics" Poarson Education 2004	
<u> </u>	Harris Charles F. Protchard Michael S. And Rahins Michael I. Wadsworth	
0.	"Fngineering Ethics- Concents and Cases" Thompson Learning 2000	
7.	Boatright, John R., "Ethics and the Conduct of Business", Pearson Education,	
8.	Swami Ranganathananda, "Universal Message of the Bhagavad Gita: An	
	exposition of the Gita in the light of modern thought and modern needs", Vol.	
	I – III, AdvaltaAshrama (Publication Department), Kolkata. 2000.	
9.	Peter Singer, "Practical Ethics", Oxford University Press, 1993	